Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 98
Filtrar
1.
Neuron ; 90(3): 581-95, 2016 05 04.
Artigo em Inglês | MEDLINE | ID: mdl-27146270

RESUMO

The mechanisms that constrain memory formation are of special interest because they provide insights into the brain's memory management systems and potential avenues for correcting cognitive disorders. RNAi knockdown in the Drosophila mushroom body neurons (MBn) of a newly discovered memory suppressor gene, Solute Carrier DmSLC22A, a member of the organic cation transporter family, enhances olfactory memory expression, while overexpression inhibits it. The protein localizes to the dendrites of the MBn, surrounding the presynaptic terminals of cholinergic afferent fibers from projection neurons (Pn). Cell-based expression assays show that this plasma membrane protein transports cholinergic compounds with the highest affinity among several in vitro substrates. Feeding flies choline or inhibiting acetylcholinesterase in Pn enhances memory, an effect blocked by overexpression of the transporter in the MBn. The data argue that DmSLC22A is a memory suppressor protein that limits memory formation by helping to terminate cholinergic neurotransmission at the Pn:MBn synapse.


Assuntos
Fibras Colinérgicas/metabolismo , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/fisiologia , Memória/fisiologia , Corpos Pedunculados/metabolismo , Proteínas de Transporte de Cátions Orgânicos/metabolismo , Sinapses/metabolismo , Transmissão Sináptica , Animais , Proteínas de Transporte/metabolismo , Dendritos/metabolismo , Genes Supressores/fisiologia
2.
J Integr Plant Biol ; 58(6): 540-8, 2016 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-26220807

RESUMO

Due to the remarkable adaptability to various environments, rice varieties with diverse flowering times have been domesticated or improved from Oryza rufipogon. Detailed knowledge of the genetic factors controlling flowering time will facilitate understanding the adaptation mechanism in cultivated rice and enable breeders to design appropriate genotypes for distinct preferences. In this study, four genes (Hd1, DTH8, Ghd7 and OsPRR37) in a rice long-day suppression pathway were collected and sequenced in 154, 74, 69 and 62 varieties of cultivated rice (Oryza sativa) respectively. Under long-day conditions, varieties with nonfunctional alleles flowered significantly earlier than those with functional alleles. However, the four genes have different genetic effects in the regulation of flowering time: Hd1 and OsPRR37 are major genes that generally regulate rice flowering time for all varieties, while DTH8 and Ghd7 only regulate regional rice varieties. Geographic analysis and network studies suggested that the nonfunctional alleles of these suppression loci with regional adaptability were derived recently and independently. Alleles with regional adaptability should be taken into consideration for genetic improvement. The rich genetic variations in these four genes, which adapt rice to different environments, provide the flexibility needed for breeding rice varieties with diverse flowering times.


Assuntos
Alelos , Flores/metabolismo , Flores/fisiologia , Oryza/metabolismo , Oryza/fisiologia , Proteínas de Plantas/metabolismo , Flores/genética , Regulação da Expressão Gênica de Plantas/genética , Regulação da Expressão Gênica de Plantas/fisiologia , Genes Supressores/fisiologia , Oryza/genética , Proteínas de Plantas/genética
3.
PLoS One ; 10(7): e0132240, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26168240

RESUMO

Synthetic genetic array (SGA) has been successfully used to identify genetic interactions in S. cerevisiae and S. pombe. In S. pombe, SGA methods use either cycloheximide (C) or heat shock (HS) to select double mutants before measuring colony size as a surrogate for fitness. Quantitative Fitness Analysis (QFA) is a different method for determining fitness of microbial strains. In QFA, liquid cultures are spotted onto solid agar and growth curves determined for each spot by photography and model fitting. Here, we compared the two S. pombe SGA methods and found that the HS method was more reproducible for us. We also developed a QFA procedure for S. pombe. We used QFA to identify genetic interactions affecting two temperature sensitive, telomere associated query mutations (taz1Δ and pot1-1). We identify exo1∆ and other gene deletions as suppressors or enhancers of S. pombe telomere defects. Our study identifies known and novel gene deletions affecting the fitness of strains with telomere defects. The interactions we identify may be relevant in human cells.


Assuntos
Aptidão Genética/fisiologia , Schizosaccharomyces/genética , Telômero/genética , Elementos Facilitadores Genéticos/fisiologia , Deleção de Genes , Genes Supressores/fisiologia , Mutação , Análise de Sequência com Séries de Oligonucleotídeos , Sequências Reguladoras de Ácido Nucleico/fisiologia , Schizosaccharomyces/fisiologia , Telômero/fisiologia
4.
Mol Genet Genomics ; 290(3): 1085-94, 2015 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-25532750

RESUMO

Brown spots on mature leaves from the heading to ripening stages in rice are considered to be lesions induced by heat stress. However, there are few studies of lesions that are induced by heat stress rather than by pathogen infections. To understand the genetic background underlying such lesions, we used the chromosome segment substitution line (CSSL) SL518, derived from a distant cross between rice cultivars Koshihikari (japonica) and Nona Bokra (indica). We observed brown spots on mature leaf blades of the CSSL, although the parents barely showed any spots. Spot formation in SL518 was accelerated by high temperature, suggesting that the candidate gene for spot formation is related to heat stress response. Using progeny derived from a cross between SL518 and Koshihikari, we mapped the causative gene, BROWN-SPOTTED LEAF 1 (BSPL1), on chromosome 5. We speculated that one or more Nona Bokra genes suppress spot formation caused by BSPL1 and identified candidate genomic regions on chromosomes 2 and 9 using a cross between a near-isogenic line for BSPL1 and other CSSLs possessing Nona Bokra segments in the Koshihikari genetic background. In conclusion, our data support the concept that multiple genes are complementarily involved in brown spot formation induced by heat stress and will be useful for cloning of the novel gene(s) related to the spot formation.


Assuntos
Cromossomos de Plantas/genética , Genes Supressores/fisiologia , Oryza/genética , Doenças das Plantas/imunologia , Locos de Características Quantitativas/genética , Estresse Fisiológico/genética , Mapeamento Cromossômico , Resistência à Doença , Genes de Plantas/genética , Temperatura Alta , Oryza/imunologia , Oryza/microbiologia , Oryza/fisiologia , Doenças das Plantas/microbiologia , Folhas de Planta/genética , Folhas de Planta/imunologia , Folhas de Planta/microbiologia , Folhas de Planta/fisiologia , Xanthomonas/fisiologia
6.
Gut ; 63(6): 984-95, 2014 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-24026351

RESUMO

BACKGROUND: Nuclear protein 1 (Nupr1) is a major factor in the cell stress response required for Kras(G12D)-driven formation of pancreatic intraepithelial neoplastic lesions (PanINs). We evaluated the relevance of Nupr1 in the development of pancreatic cancer. METHODS: We investigated the role of Nupr1 in pancreatic ductal adenocarcinoma (PDAC) progression beyond PanINs in Pdx1-cre;LSL-Kras(G12D);Ink4a/Arf(fl/fl)(KIC) mice. RESULTS: Even in the context of the second tumorigenic hit of Ink4a/Arf deletion, Nupr1 deficiency led to suppression of malignant transformation involving caspase 3 activation in premalignant cells of KIC pancreas. Only half of Nupr1-deficient;KIC mice achieved PDAC development, and incident cases survived longer than Nupr1(wt);KIC mice. This was associated with the development of well-differentiated PDACs in Nupr1-deficient;KIC mice, which displayed enrichment of genes characteristic of the recently identified human classical PDAC subtype. Nupr1-deficient;KIC PDACs also shared with human classical PDACs the overexpression of the Kras-activation gene signature. In contrast, Nupr1(wt);KIC mice developed invasive PDACs with enriched gene signature of human quasi-mesenchymal (QM) PDACs. Cells derived from Nupr1-deficient;KIC PDACs growth in an anchorage-independent manner in vitro had higher aldehyde dehydrogenase activity and overexpressed nanog, Oct-4 and Sox2 transcripts compared with Nupr1(wt);KIC cells. Moreover, Nupr1-deficient and Nurpr1(wt);KIC cells differed in their sensitivity to the nucleoside analogues Ly101-4b and WJQ63. Together, these findings show the pivotal role of Nupr1 in both the initiation and late stages of PDAC in vivo, with a potential impact on PDAC cell stemness. CONCLUSIONS: According to Nupr1 status, KIC mice develop tumours that phenocopy human classical or QM-PDAC, respectively, and present differential drug sensitivity, thus becoming attractive models for preclinical drug trials.


Assuntos
Adenocarcinoma/genética , Carcinogênese/genética , Proteínas de Ligação a DNA/genética , Expressão Gênica , Genes Supressores/fisiologia , Proteínas de Neoplasias/genética , Neoplasias Pancreáticas/genética , Adenocarcinoma/química , Adenocarcinoma/patologia , Animais , Antimetabólitos Antineoplásicos/farmacologia , Caderinas/análise , Caspase 3/análise , Sobrevivência Celular/efeitos dos fármacos , Claudina-1/análise , Inibidor p16 de Quinase Dependente de Ciclina/genética , Desoxicitidina/análogos & derivados , Desoxicitidina/farmacologia , Modelos Animais de Doenças , Transição Epitelial-Mesenquimal/genética , Heterozigoto , Proteínas Imediatamente Precoces/análise , Expectativa de Vida , Camundongos , Camundongos Knockout , Mucina-1/análise , Neoplasias Pancreáticas/química , Neoplasias Pancreáticas/patologia , Proteínas Proto-Oncogênicas p21(ras)/genética , Transdução de Sinais/genética , Fator de Crescimento Transformador beta1/análise , Células Tumorais Cultivadas , Gencitabina
7.
Gene ; 512(2): 286-93, 2013 Jan 10.
Artigo em Inglês | MEDLINE | ID: mdl-23103832

RESUMO

Nuclear tRNA genes are transcribed by RNA polymerase III. The A- and B-boxes located within the transcribed regions are essential promoter elements for nuclear tRNA gene transcription. The Arabidopsis genome contains ten annotated genes encoding identical tRNA(Lys)(UUU) molecules, which are scattered on the five chromosomes. In this study, we prepared ten tDNA constructs including each of the tRNA(Lys)(UUU) coding sequences with their individual 5' and 3' flanking sequences, and assayed tRNA expression using an in vitro RNA polymerase III-dependent transcription system. Transcription levels differed significantly among the ten genes and two of the tRNA genes were transcribed at a very low level, despite possessing A- and B-boxes identical to those of the other tRNA genes. To examine whether the in vitro results were reproducible in vivo, the 5' flanking sequence of an amber suppressor tRNA gene was then replaced with those of the ten tRNA(Lys) genes. An in vivo experiment based on an amber suppressor tRNA that mediates suppression of a premature amber codon in a ß-glucuronidase (GUS) reporter gene in plant tissues generated nearly identical results to those obtained in vitro. Analysis of mutated versions of the amber suppressor tRNA gene, which contained base substitutions around the transcription start site (TSS), showed that the context around the transcription start sites is a crucial determinant for transcription of plant tRNA(Lys)(UUU) both in vitro and in vivo. The above transcription regulation by context around TSS differed between tRNA genes and other Pol III-dependent genes.


Assuntos
Arabidopsis/fisiologia , Cromossomos de Plantas/fisiologia , Regulação da Expressão Gênica de Plantas/fisiologia , RNA de Plantas/biossíntese , RNA de Transferência de Lisina/biossíntese , Transcrição Gênica/fisiologia , Genes de Plantas/fisiologia , Genes Supressores/fisiologia , RNA de Plantas/genética , RNA de Transferência de Lisina/genética
9.
Cold Spring Harb Perspect Med ; 2(2): a006916, 2012 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-22355797

RESUMO

Control of HIV-1 gene expression depends on two viral regulatory proteins, Tat and Rev. Tat stimulates transcription elongation by directing the cellular transcriptional elongation factor P-TEFb to nascent RNA polymerases. Rev is required for the transport from the nucleus to the cytoplasm of the unspliced and incompletely spliced mRNAs that encode the structural proteins of the virus. Molecular studies of both proteins have revealed how they interact with the cellular machinery to control transcription from the viral LTR and regulate the levels of spliced and unspliced mRNAs. The regulatory feedback mechanisms driven by HIV-1 Tat and Rev ensure that HIV-1 transcription proceeds through distinct phases. In cells that are not fully activated, limiting levels of Tat and Rev act as potent blocks to premature virus production.


Assuntos
Expressão Gênica/genética , Infecções por HIV/virologia , HIV-1/genética , Transcrição Gênica/genética , Produtos do Gene rev do Vírus da Imunodeficiência Humana/genética , Produtos do Gene tat do Vírus da Imunodeficiência Humana/genética , Retroalimentação Fisiológica/fisiologia , Genes Supressores/fisiologia , Humanos , Poliadenilação/fisiologia , Splicing de RNA/fisiologia , RNA Viral/fisiologia , Fatores de Transcrição/fisiologia , Ativação Viral/fisiologia , Replicação Viral/fisiologia
10.
Plant Sci ; 183: 175-82, 2012 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-22195591

RESUMO

Leaf senescence, the final stage of leaf development, occurs in an age-dependent manner but can be finely regulated by other developmental and environmental factors. Despite the discovery of many genes involved in leaf senescence, the molecular genetic mechanisms of leaf senescence are still unclear. In this study, an activation-tagging based suppressor screen was performed to identify Arabidopsis genes that could suppress the delayed leaf senescence phenotypes of oresara9-1 (ore9-1) when overexpressed. The suppressor1 of ore9 dominant (sor1-D) was caused by the overexpression of AtCHX24, a putative cation/H(+) exchanger. The sor1-D mutation suppressed the phenotypes of ore9 in age-dependent and dark-induced senescence. Furthermore, the sor1-D mutation restored the delayed senescence phenotypes of ore1 and ore3. The sor1-D mutant also exhibited increased sensitivity to pH changes during dark-induced leaf senescence. Collectively, overexpression of AtCHX24 results in accelerated leaf senescence and these results suggest that AtCHX24 plays an important role in regulating leaf senescence.


Assuntos
Antiporters/genética , Proteínas de Arabidopsis/genética , Arabidopsis/fisiologia , Regulação da Expressão Gênica de Plantas , Genes Supressores , Folhas de Planta/fisiologia , Plantas Geneticamente Modificadas/fisiologia , Antiporters/metabolismo , Antiporters/fisiologia , Arabidopsis/genética , Arabidopsis/metabolismo , Proteínas de Arabidopsis/metabolismo , Proteínas de Arabidopsis/fisiologia , Proteínas de Transporte/genética , Proteínas de Transporte/metabolismo , Proteínas de Transporte/fisiologia , DNA Bacteriano/genética , Expressão Gênica , Genes Supressores/fisiologia , Concentração de Íons de Hidrogênio , Mutação , Fenótipo , Fotoperíodo , Folhas de Planta/genética , Folhas de Planta/metabolismo , Plantas Geneticamente Modificadas/genética , Plantas Geneticamente Modificadas/metabolismo , RNA de Plantas/análise , RNA de Plantas/genética , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Transdução de Sinais , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Fatores de Transcrição/fisiologia
11.
Mol Plant Microbe Interact ; 24(8): 973-83, 2011 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-21751853

RESUMO

Begomoviruses (family Geminiviridae) are single-stranded DNA viruses transmitted by the whitefly Bemisia tabaci. Many economically important diseases in crops are caused by begomoviruses, particularly in tropical and subtropical environments. These include the betasatellite-associated begomoviruses causing cotton leaf curl disease (CLCuD) that causes significant losses to a mainstay of the economy of Pakistan, cotton. RNA interference (RNAi) or gene silencing is a natural defense response of plants against invading viruses. In counter-defense, viruses encode suppressors of gene silencing that allow them to effectively invade plants. Here, we have analyzed the ability of the begomovirus Cotton leaf curl Multan virus (CLCuMV) and its associated betasatellite, Cotton leaf curl Multan ß-satellite (CLCuMB) which, together, cause CLCuD, and the nonessential alphasatellite (Cotton leaf curl Multan alphasatellite [CLCuMA]) for their ability to suppress gene silencing in Nicotiana benthamiana. The results showed that CLCuMV by itself was unable to efficiently block silencing. However, in the presence of the betasatellite, gene silencing was entirely suppressed. Silencing was not affected in any way when infections included CLCuMA, although the alphasatellite was, for the first time, shown to be a target of RNA silencing, inducing the production in planta of specific small interfering RNAs, the effectors of silencing. Subsequently, using a quantitative real-time polymerase chain reaction assay and Northern blot analysis, the ability of all proteins encoded by CLCuMV and CLCuMB were assessed for their ability to suppress RNAi and the relative strengths of their suppression activity were compared. The analysis showed that the V2, C2, C4, and ßC1 proteins exhibited suppressor activity, with the V2 showing the strongest activity. In addition, V2, C4, and ßC1 were examined for their ability to bind RNA and shown to have distinct specificities. Although each of these proteins has, for other begomoviruses or betasatellites, been previously shown to have suppressor activity, this is the first time all proteins encoded by a geminiviruses (or begomovirus-betasatellite complex) have been examined and also the first for which four separate suppressors have been identified.


Assuntos
Begomovirus/metabolismo , Folhas de Planta/virologia , Interferência de RNA , Vírus Satélites/metabolismo , Agrobacterium tumefaciens , Begomovirus/genética , Regulação Viral da Expressão Gênica/fisiologia , Genes Supressores/fisiologia , Proteínas de Fluorescência Verde/genética , Interações Hospedeiro-Patógeno , Ligação Proteica , RNA Viral/metabolismo , Vírus Satélites/genética , Transgenes/fisiologia , Proteínas Virais/genética , Proteínas Virais/metabolismo
12.
Virology ; 398(2): 176-86, 2010 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-20036409

RESUMO

Loss of up to four amino acids from the C terminus of the 1318 residue bacteriophage T7 gp16 allows plaque formation at normal efficiencies. Loss of five residues results in non-infective virions, and loss of twelve prevents assembly of stable particles. However, replacing the C-terminal seven with nineteen non-native residues allows assembly of non-infective virions. The latter adsorb and eject internal core proteins into the cell envelope but no phage DNA enters the cytoplasm. Extragenic suppressors of the defective gene 16 lie in gene 15; the mutant gp15 proteins not only re-establish infectivity, they fully restore the kinetics of genome internalization to those exhibited by wild-type phage. After ejection from the infecting particle, gp15 and gp16 thus function together in ratcheting the leading end of the T7 genome into the cytoplasm of the infected cell.


Assuntos
Bacteriófago T7/fisiologia , DNA Viral/fisiologia , Proteínas de Ligação a DNA/fisiologia , Genes Virais/fisiologia , Proteínas Virais/fisiologia , Bacteriófago T7/genética , Bacteriófago T7/patogenicidade , Membrana Celular/virologia , DNA Viral/genética , DNA Viral/metabolismo , Escherichia coli/virologia , Genes Supressores/fisiologia , Genes Virais/genética , Mutação/genética , Transcrição Gênica/genética , Vírion/genética , Vírion/fisiologia
14.
Eukaryot Cell ; 8(7): 1027-37, 2009 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-19465564

RESUMO

Sporulation of Saccharomyces cerevisiae is a developmental process in which four haploid spores are generated inside a diploid cell. Gip1, a sporulation-specific targeting subunit of protein phosphatase type 1, together with its catalytic subunit, Glc7, colocalizes with septins along the extending prospore membrane and is required for septin organization and spore wall formation. However, the mechanism by which Gip1-Glc7 phosphatase promotes these events is unclear. We show here that Ysw1, a sporulation-specific coiled-coil protein, has a functional relationship to Gip1-Glc7 phosphatase. Overexpression of YSW1 partially suppresses the sporulation defect of a temperature-sensitive allele of gip1. Ysw1 interacts with Gip1 in a two-hybrid assay, and this interaction is required for suppression. Ysw1 tagged with green fluorescent protein colocalizes with septins and Gip1 along the extending prospore membrane during spore formation. Sporulation is partially defective in ysw1Delta mutant, and cytological analysis revealed that septin structures are perturbed and prospore membrane extension is aberrant in ysw1Delta cells. These results suggest that Ysw1 functions with the Gip1-Glc7 phosphatase to promote proper septin organization and prospore membrane formation.


Assuntos
Genes Supressores/fisiologia , Reprodução Assexuada/fisiologia , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , Esporos Fúngicos/metabolismo , Transporte Ativo do Núcleo Celular/genética , Sequência de Aminoácidos , Sequência de Bases , Membranas Intracelulares/metabolismo , Membranas Intracelulares/ultraestrutura , Meiose/genética , Dados de Sequência Molecular , Proteína Fosfatase 1/genética , Proteína Fosfatase 1/metabolismo , Transporte Proteico/genética , Saccharomyces cerevisiae/ultraestrutura , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/isolamento & purificação , Esporos Fúngicos/ultraestrutura
15.
Thorax ; 64(2): 179-80, 2009 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-19176844

RESUMO

The molecular pathology of mutant F508del CFTR is partially corrected in vitro by the secondary amino acid substitution R553Q in the ABC signature motif. An individual with the CFTR genotype R553X/F508del-R553Q showed the typical symptoms and electrophysiological anomalies of cystic fibrosis in the airways and intestine. Sweat chloride concentrations were normal early in life, but were later raised into the range that is diagnostic for cystic fibrosis, suggesting that R553Q could temporarily correct the basic defect in sweat glands. R553Q caused a delay in diagnosis because of false negative sweat tests but was not a disease reverting suppressor mutation as had been inferred from cellular models.


Assuntos
Regulador de Condutância Transmembrana em Fibrose Cística/genética , Fibrose Cística/genética , Mutação/genética , Doenças das Glândulas Sudoríparas/genética , Adulto , Fibrose Cística/diagnóstico , Reações Falso-Negativas , Feminino , Genes Supressores/fisiologia , Humanos , Cloreto de Sódio/metabolismo , Suor/química
16.
Av. odontoestomatol ; 24(1): 55-60, ene.-feb. 2008.
Artigo em Es | IBECS | ID: ibc-62946

RESUMO

Se presenta una revisión bibliográfica breve sobre los principales aspectos moleculares de interés en la cancerización de cavidad oral. Se hace referencia a los conocimientos más recientes sobre las aberraciones cromosómicas más comunes y las alteraciones de los oncogenes y genes supresores tumorales que están implicados en la carcinogénesis oral. Así mismo, se resume la teoría molecular actual que explica el proceso de cancerización de campo (AU)


A review about the main molecular aspects on oral cavity cancerization is presented, with special reference to the common chromosomal aberration, oncogenes and tumour suppressor genes implied in oral carcinogenesis. A summary about molecular theory explaining the field cancerization process is also presented (AU)


Assuntos
Neoplasias Bucais/congênito , Neoplasias Bucais/diagnóstico , Neoplasias Bucais/genética , Neoplasias Bucais/patologia , Aberrações Cromossômicas/classificação , Oncogenes/fisiologia , Genes Supressores/fisiologia , Imuno-Histoquímica/métodos , Boca/patologia , Neoplasias Bucais/complicações , Genes Supressores , Genes Supressores/efeitos da radiação
18.
PLoS Genet ; 3(8): e134, 2007 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-17696614

RESUMO

Genome instability is a hallmark of cancer cells. One class of genome aberrations prevalent in tumor cells is termed gross chromosomal rearrangements (GCRs). GCRs comprise chromosome translocations, amplifications, inversions, deletion of whole chromosome arms, and interstitial deletions. Here, we report the results of a genome-wide screen in Saccharomyces cerevisiae aimed at identifying novel suppressors of GCR formation. The most potent novel GCR suppressor identified is BUD16, the gene coding for yeast pyridoxal kinase (Pdxk), a key enzyme in the metabolism of pyridoxal 5' phosphate (PLP), the biologically active form of vitamin B6. We show that Pdxk potently suppresses GCR events by curtailing the appearance of DNA lesions during the cell cycle. We also show that pharmacological inhibition of Pdxk in human cells leads to the production of DSBs and activation of the DNA damage checkpoint. Finally, our evidence suggests that PLP deficiency threatens genome integrity, most likely via its role in dTMP biosynthesis, as Pdxk-deficient cells accumulate uracil in their nuclear DNA and are sensitive to inhibition of ribonucleotide reductase. Since Pdxk links diet to genome stability, our work supports the hypothesis that dietary micronutrients reduce cancer risk by curtailing the accumulation of DNA damage and suggests that micronutrient depletion could be part of a defense mechanism against hyperproliferation.


Assuntos
Aberrações Cromossômicas , Cromossomos Fúngicos , Dano ao DNA , Genes Supressores , Fosfato de Piridoxal/fisiologia , Saccharomyces cerevisiae/genética , Quebras de DNA de Cadeia Dupla , Genes Supressores/fisiologia , Genes cdc , Técnicas Genéticas , Genoma Fúngico , Instabilidade Genômica , Células HeLa , Humanos , Modelos Biológicos , Piridoxal Quinase/genética , Piridoxal Quinase/fisiologia , Fosfato de Piridoxal/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/fisiologia , Supressão Genética
19.
Infect Immun ; 75(6): 2795-801, 2007 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-17371864

RESUMO

We have suggested an important role of the pyrH gene during the infectious process of Vibrio vulnificus. Previously, we have identified 12 genes expressed preferentially during human infections by using in vivo-induced antigen technology. Among the in vivo-expressed genes, pyrH encodes UMP kinase catalyzing UMP phosphorylation. Introduction of a deletion mutation to the pyrH gene was lethal to V. vulnificus, and an insertional mutant showed a high frequency of curing. We constructed a site-directed mutant strain (R62H/D77N) on Arg-62 and Asp-77, both predicted to be involved in UMP binding, and characterized the R62H/D77N strain compared with the previously reported insertional mutant. We further investigated the essential role of the pyrH gene in the establishment of infection using the R62H/D77N strain. Cytotoxicity was decreased in the R62H/D77N strain, and the defect was restored by an in trans complementation. The intraperitoneal 50% lethal dose of the R62H/D77N strain increased by 26- and 238,000-fold in normal and iron-overloaded mice, respectively. The growth of the R62H/D77N strain in 50% HeLa cell lysate, 100% human ascitic fluid, and 50% human serum was significantly retarded compared to that of the isogenic wild-type strain. The R62H/D77N mutant also had a critical defect in the ability to survive and replicate even in iron-overloaded mice. These results demonstrate that pyrH is essential for the in vivo survival and growth of V. vulnificus and should be an attractive new target for the development of antibacterial drugs and replication-controllable live attenuated vaccines.


Assuntos
Proteínas de Escherichia coli/fisiologia , Genes Supressores/fisiologia , Transferases/fisiologia , Vibrioses/microbiologia , Vibrio vulnificus/fisiologia , Animais , Antígenos de Bactérias/genética , Proteínas de Escherichia coli/metabolismo , Humanos , Camundongos , Transferases/metabolismo , Vibrio vulnificus/genética , Vibrio vulnificus/imunologia , Vibrio vulnificus/patogenicidade
20.
Biotechnol Lett ; 29(4): 641-5, 2007 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-17206371

RESUMO

Agrobacterium-mediated gene transfer was used to co-express three virus-derived post-transcriptional gene silencing (PTGS) suppressors, P19 from tomato bushy stunt virus and two species of helper component proteinase (HcPro) from tobacco etch virus (TEV) and turnip mosaic virus, with beta-glucuronidase (GUS) in harvested lettuce leaf tissue to investigate whether GUS accumulation increases in the presence of PTGS suppressors. Co-expression incubations were 3-5 days at 4 and 22 degrees C. GUS activity and leaf viability were measured after incubation. Co-expression of PTGS suppressors did not elevate GUS expression levels. Under certain incubation conditions, co-expression of TEV HcPro significantly lowered transient GUS expression and was detrimental to leaf viability, suggesting that expression of PTGS silencers may have a negative effect on transient expression levels that outweighs any effects of PTGS suppression in harvested leaf tissues.


Assuntos
Celulases/metabolismo , Regulação da Expressão Gênica de Plantas/fisiologia , Genes Supressores/fisiologia , Folhas de Planta/fisiologia , Interferência de RNA/fisiologia , Proteínas Recombinantes/metabolismo , Celulases/genética , Plantas Geneticamente Modificadas/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...